INSECTICIDE MODE OF ACTION TABLE | Main mode of Action Group
Primary Site of Action | Chemical sub-group of
Exemplifying Active
Constituent | Active Constituents | | |--|---|---|--| | 1* Acetylcholinesterase (AChE) inhibitors Nerve action | 1A
Carbamates* | Bendiocarb
Carbaryl
Carbofuran
Carbosulfan
Methiocarb | Methomyl
Oxamyl
Pirimicarb
Propoxur
Thiodicarb | | | 1B
Organophosphates* | Acephate Azamethiphos Azinphos methyl Cadusafos Chlorfenvinphos Chlorpyrifos Chlorpyrifos-methyl Diazinon Dichlorvos Dimethoate Ethion Fenamiphos Fenitrothion Fenthion | Malathion Methidathion Mevinphos Omethoate Phorate Phosmet Pirimiphos-methyl Profenofos Prothiofos Temephos Terbufos Trichlorfon | | 2
GABA-gated chloride channel | 2A Cyclodiene organochlorines | No registered active constituents. | | | blockers
Nerve action | 2B Phenylpyrazoles (Fiproles) | Fipronil | | | 3
Sodium channel modulators
Nerve action | 3A Pyrethroids Pyrethrins | Allethrin Alpha-cypermethrin Beta-cyfluthrin Bifenthrin Bioallethrin Bioresmethrin Cyfluthrin Cypermethrin Cyphenothrin Deltamethrin Esbiothrin Esfenvalerate Fenvalerate | Flumethrin Gamma-cyhalothrin Imiprothrin Lambda-cyhalothrin Permethrin Prallethrin Pyrethrins Tau-fluvalinate Tetramethrin Transfluthrin Zeta-cypermethrin | | 4 Nicotinic acetylcholine receptor (nAChR) competitive modulators Nerve action | 4A Neonicotinoids | Acetamiprid
Clothianidin | Imidacloprid
Thiacloprid
Thiamethoxam | | | 4B
Nicotine
4C | Dinotefuran Thiamethoxam No registered active constituents in Australia. | | | | Sulfoximine 4D | Sulfoxaflor | | | | Butenolides | Flupyradifurone | | | 5 | Spinosyns | Spinosad | | ## Please note | Main mode of Action Group
Primary Site of Action | Chemical sub-group of Exemplifying Active Constituent | Active Constituents | |---|--|--| | Nicotinic Acetylcholine
receptor (nAChR) allosteric
modulators - Site I
Nerve action | | Spinetoram | | 6 | | | | Glutamate-gated Chloride
(GluCl) channel allosteric
modulators
Nerve action | Avermectins
Milbemycins | Abamectin Emamectin benzoate Milbemectin | | 7 | 7A Juvenile hormone analogues | Methoprene | | 7 Juvenile hormone mimics Growth regulation | 7B
Fenoxycarb | Fenoxycarb | | G. G. Warring G. | 7C
Pyriproxyfen | Pyriproxyfen | | 8 | 8A
Alkyl halides | Methyl bromide | | Miscellaneous non-specific (multi-site) inhibitors | 8B
Chloropicrin | Chloropicrin | | , | 8C
Fluorides | Sulfuryl fluoride | | 9
Chordotonal organ TRPV | 9B Pyridine azomethine derivatives | Pymetrozine | | channel modulators
Nerve action | 9D
Pyropenes | Afidopyropen | | 10
Mite growth inhibitors
affecting CHS1 | 10A
Clofentezine
Hexythiazox | Clofentezine
Hexythiazox | | Growth regulation | 10B
Etoxazole | Etoxazole | | 11 Microbial disrupters of insect midgut membranes (includes transgenic crops expressing Bacillus thuringiensis toxins) | 11A Bacillus thuringiensis and the insecticidal proteins they produce | Bacillus thuringiensis subsp. israelensis B. thuringiensis subsp. aizawai B. thuringiensis subsp. kurstaki B. thuringiensis subsp. tenebrionis B. thuringiensis crop proteins: Cry1Ac Cry2Ab Cry1F Vip3A | | | 11B Bacillus sphaericus and the insecticidal proteins they produce | Bacillus sphaericus | | 12
Inhibitors of mitochondrial
ATP synthase
Energy metabolism | 12A
Diafenthiuron | Diafenthiuron | | | 12B
Organotin miticides | Fenbutatin oxide | | | 12C Propargite | Propargite | | | 12D
Tetradifon | Tetradifon | | Main mode of Action Group
Primary Site of Action | Chemical sub-group of
Exemplifying Active
Constituent | Active Constituents | |---|---|---| | 13 Uncoupler of oxidative phosphorylation via disruption of the proton gradient Energy metabolism | Pyrroles | Chlorfenapyr | | 14 Nicotinic acetylcholine receptor (nAChR) channel blockers Nerve action | Nereistoxin analogues | No registered active constituents in Australia. | | 15 Inhibitors of chitin biosynthesis affecting CHS1 Growth regulation | Benzoylureas | Bistrifluron Hexaflumuron Chlorfluazuron Lufenuron Diflubenzuron Novaluron Flufenoxuron Triflumuron | | 16 Inhibitors of chitin biosynthesis, type 1 Growth regulation | Buprofezin | Buprofezin | | 17 Moulting disrupter, Dipteran Growth regulation | Cyromazine | Cyromazine | | 18 Ecdysone receptor agonists Growth regulation | Diacylhydrazines | Methoxyfenozide
Tebufenozide | | 19 Octopamine receptor agonists Nerve action | Amitraz | Amitraz | | 20 | 20A
Hydramethylnon | Hydramethylnon | | Mitochondrial complex III electron transport inhibitors | 20B
Acequinocyl | Acequinocyl | | Qo site
Energy metabolism | 20C
20D
Bifenazate | No registered active constituents in Australia. Bifenazate | | 21
Mitochondrial complex I | 21A METI acaricides and insecticides | Fenpyroximate Tebufenpyrad | | electron transport inhibitors
Energy metabolism | 21B Rotenone | Rotenone (Derris) | | 22
Voltage-dependent sodium | 22A
Oxadiazines | Indoxacarb | | channel blockers
Nerve action | 22B
Semicarbazones | Metaflumizone | | 23 Inhibitors of acetyl-CoA carboxylase Lipid synthesis, growth | Tetronic and
Tetramic acid derivatives | Spirotetramat Spiromesifen | | regulation | |] ' | | Main mode of Action Group
Primary Site of Action | Chemical sub-group of
Exemplifying Active
Constituent | Active Constituents | | |--|---|--|--| | 24 Mitochondrial complex IV | 24A Phosphides | Phosphine
Aluminium phosphide
Magnesium phosphide | | | electron transport inhibitors Energy metabolism | 24B Cyanides | No registered active constituents in Australia. | | | 25
Mitochondrial complex II | 25A Beta-ketonitrile derivatives | Cyflumetofen | | | electron transport inhibitors
Energy metabolism | 25B Carboxanilides | No registered active constituents in Australia. | | | 28 Ryanodine receptor modulators Nerve and muscle action | Diamides | Chlorantraniliprole Cyantraniliprole Tetraniliprole | | | 29 Chordotonal organ nicotinamidase inhibitors Nerve action | Flonicamid | Flonicamid | | | 30 GABA-gated chloride channel allosteric modulators Nerve action | Meta-diamides
Isoxazolines | Broflanilide
Isocycloseram | | | 31 | Granuloviruses (GVs) | Cydia pomonella granulosis virus strain V22 | | | Baculoviruses Host-specific occluded pathogenic viruses (Midgut epithelial columnar cell membrane target site – undefined) | Nucleopolyhedroviruses
(NPVs) | Polyhedral occlusion bodies of the NPV of Helicoverpa zea or H. armigera | | | 32 Nicotinic acetylcholine receptor (nAChR) allosteric modulators - Site II Nerve action | GS-omega/kappa HXTX-Hv1a
peptide | No registered active constituents in Australia. | | | 33 Calcium-activated potassium channel (KCA2) modulators Nerve action | Acynonapyr | No registered active constituents in Australia. | | | 34 Mitochondrial Complex III transport inhibitors - Qi site Energy metabolism | Flometoquin | No registered active constituents in Australia. | | | 36 Chordotonal organ modulators – undefined target site Nerve action | Pyridazine
pyrazolecarboxamides | Dimpropyridaz | | | | Azadirachtin | Azadirachtin | | | UN | Clitoria ternatea extract Dicofol | Clitoria ternatea extract Dicofol | | | | | | | | Main mode of Action Group
Primary Site of Action | Chemical sub-group of
Exemplifying Active
Constituent | Active Constituents | |--|---|---| | Compounds of unknown or
uncertain mode of action
(MoA) ² | Lime sulphur | Lime sulphur | | | Sulphur | Sulphur | | UNE
(Botanical essence including
extracts and unrefined oils) | Garlic extract and garlic oil
Botanical oils | Garlic extract and garlic oil Orange oil Tea tree oil Eucalyptus oil Emulsifiable botanical oil | | UNF Fungal agents of unknown or uncertain mode of action (MoA) (Target protein responsible for biological activity is unknown, or uncharacterized) | | Beauveria bassiana strains | | UNM Non-specific mechanical and physical disruptors | | Diatomaceous earth Calcined kaolin Mineral oil Paraffinic oils Petroleum oil | ^{*}All members of the class may not be cross resistant. ² A compound with an unknown or controversial mode of action or an unknown mode of toxicity will be held in Group UN until evidence becomes available to enable that compound to be assigned to a more appropriate mode of action group.